
2024-12-30 日报 Day51

今日的鸡汤
我们的人生不是只有成功和失败两个词,坚持和奋斗同样有意义。
今日学习内容
1、JS红皮书P152-158 第六章:集合引用类型
今日笔记
1、搜索和位置方法:ECMAScript 提供两类搜索数组的方法:按严格相等搜索和按断言函数搜索。
- 严格相等:ECMAScript 提供了 3 个严格相等的搜索方法:indexOf()、lastIndexOf()和 includes()。其中,前两个方法在所有版本中都可用,而第三个方法是 ECMAScript 7 新增的。这些方法都接收两个参数:要查找的元素和一个可选的起始搜索位置。indexOf()和 includes()方法从数组前头(第一项)开始向后搜索,而 lastIndexOf()从数组末尾(最后一项)开始向前搜索。
indexOf()和 lastIndexOf()都返回要查找的元素在数组中的位置,如果没找到则返回-1。includes()返回布尔值,表示是否至少找到一个与指定元素匹配的项。在比较第一个参数跟数组每一项时,会使用全等(===)比较,也就是说两项必须严格相等。下面来看一些例子:1
2
3
4
5
6
7
8
9
10
11
12
13
14let numbers = [1, 2, 3, 4, 5, 4, 3, 2, 1];
alert(numbers.indexOf(4)); // 3
alert(numbers.lastIndexOf(4)); // 5
alert(numbers.includes(4)); // true
alert(numbers.indexOf(4, 4)); // 5
alert(numbers.lastIndexOf(4, 4)); // 3
alert(numbers.includes(4, 7)); // false
let person = { name: "Nicholas" };
let people = [{ name: "Nicholas" }];
let morePeople = [person];
alert(people.indexOf(person)); // -1
alert(morePeople.indexOf(person)); // 0
alert(people.includes(person)); // false
alert(morePeople.includes(person)); // true - 断言函数:ECMAScript 也允许按照定义的断言函数搜索数组,每个索引都会调用这个函数。断言函数的返回值决定了相应索引的元素是否被认为匹配。
断言函数接收 3 个参数:元素、索引和数组本身。其中元素是数组中当前搜索的元素,索引是当前元素的索引,而数组就是正在搜索的数组。断言函数返回真值,表示是否匹配。find()和 findIndex()方法使用了断言函数。这两个方法都从数组的最小索引开始。find()返回第一个匹配的元素,findIndex()返回第一个匹配元素的索引。这两个方法也都接收第二个可选的参数,用于指定断言函数内部 this 的值。2、迭代方法:ECMAScript 为数组定义了 5 个迭代方法。每个方法接收两个参数:以每一项为参数运行的函数,以及可选的作为函数运行上下文的作用域对象(影响函数中 this 的值)。传给每个方法的函数接收 3个参数:数组元素、元素索引和数组本身。因具体方法而异,这个函数的执行结果可能会也可能不会影响方法的返回值。数组的 5 个迭代方法如下。1
2
3
4
5
6
7
8
9
10
11
12
13
14const people = [
{
name: "Matt",
age: 27
},
{
name: "Nicholas",
age: 29
}
];
alert(people.find((element, index, array) => element.age < 28));
// {name: "Matt", age: 27}
alert(people.findIndex((element, index, array) => element.age < 28));
// 0
every():对数组每一项都运行传入的函数,如果对每一项函数都返回 true,则这个方法返回 true。
filter():对数组每一项都运行传入的函数,函数返回 true 的项会组成数组之后返回。
forEach():对数组每一项都运行传入的函数,没有返回值。
map():对数组每一项都运行传入的函数,返回由每次函数调用的结果构成的数组。
some():对数组每一项都运行传入的函数,如果有一项函数返回 true,则这个方法返回 true。
这些方法都不改变调用它们的数组。
3、归并方法:ECMAScript 为数组提供了两个归并方法:reduce()和 reduceRight()。这两个方法都会迭代数组的所有项,并在此基础上构建一个最终返回值。reduce()方法从数组第一项开始遍历到最后一项。而 reduceRight()从最后一项开始遍历至第一项。
这两个方法都接收两个参数:对每一项都会运行的归并函数,以及可选的以之为归并起点的初始值。传给 reduce()和 reduceRight()的函数接收 4 个参数:上一个归并值、当前项、当前项的索引和数组本身。这个函数返回的任何值都会作为下一次调用同一个函数的第一个参数。如果没有给这两个方法传入可选的第二个参数(作为归并起点值),则第一次迭代将从数组的第二项开始,因此传给归并函数的第一个参数是数组的第一项,第二个参数是数组的第二项。
可以使用 reduce()函数执行累加数组中所有数值的操作,比如:第一次执行归并函数时,prev 是 1,cur 是 2。第二次执行时,prev 是 3(1 + 2),cur 是 3(数组第三项)。如此递进,直到把所有项都遍历一次,最后返回归并结果。1
2
3const values = [1, 2, 3, 4, 5];
const sum = values.reduce((prev, cur, index, array) => prev + cur);
alert(sum); // 15
reduceRight()方法与之类似,只是方向相反。来看下面的例子:在这里,第一次调用归并函数时 prev 是 5,而 cur 是 4。究竟是使用 reduce()还是 reduceRight(),只取决于遍历数组元素的方向。1
2
3
4
5let values = [1, 2, 3, 4, 5];
let sum = values.reduceRight(function(prev, cur, index, array){
return prev + cur;
});
alert(sum); // 15
4、定型数组: 定型数组(typed array)是 ECMAScript 新增的结构,目的是提升向原生库传输数据的效率。实际上,JavaScript 并没有“TypedArray”类型,它所指的其实是一种特殊的包含数值类型的数组。用途:随着浏览器的流行,不难想象人们会满怀期待地通过它来运行复杂的 3D 应用程序。早在 2006 年,Mozilla、Opera 等浏览器提供商就实验性地在浏览器中增加了用于渲染复杂图形应用程序的编程平台,无须安装任何插件。其目标是开发一套 JavaScript API,从而充分利用 3D 图形 API 和 GPU 加速,以便在 - WebGL: 在 WebGL 的早期版本中,因为 JavaScript 数组与原生数组之间不匹配,所以出现了性能问题。图形驱动程序 API 通常不需要以 JavaScript 默认双精度浮点格式传递给它们的数值,而这恰恰是 JavaScript数组在内存中的格式。因此,每次 WebGL 与 JavaScript 运行时之间传递数组时,WebGL 绑定都需要在目标环境分配新数组,以其当前格式迭代数组,然后将数值转型为新数组中的适当格式,而这些要花费很多时间。
- 定型数组: 这当然是难以接受的,Mozilla 为解决这个问题而实现了 CanvasFloatArray。这是一个提供JavaScript 接口的、C 语言风格的浮点值数组。JavaScript 运行时使用这个类型可以分配、读取和写入数组。这个数组可以直接传给底层图形驱动程序 API,也可以直接从底层获取到。最终,CanvasFloatArray变成了 Float32Array,也就是今天定型数组中可用的第一个“类型”。
5、ArrayBuffer: Float32Array 实际上是一种“视图”,可以允许 JavaScript 运行时访问一块名为 ArrayBuffer 的预分配内存。ArrayBuffer 是所有定型数组及视图引用的基本单位。
ArrayBuffer()是一个普通的 JavaScript 构造函数,可用于在内存中分配特定数量的字节空间。ArrayBuffer 一经创建就不能再调整大小。不过,可以使用 slice()复制其全部或部分到一个新实例中:1
2const buf = new ArrayBuffer(16); // 在内存中分配 16 字节
alert(buf.byteLength); // 16不能仅通过对 ArrayBuffer 的引用就读取或写入其内容。要读取或写入 ArrayBuffer,就必须通过视图。视图有不同的类型,但引用的都是 ArrayBuffer 中存储的二进制数据。1
2
3const buf1 = new ArrayBuffer(16);
const buf2 = buf1.slice(4, 12);
alert(buf2.byteLength); // 8
6、DataView: 第一种允许你读写 ArrayBuffer 的视图是 DataView。这个视图专为文件 I/O 和网络 I/O 设计,其API 支持对缓冲数据的高度控制,但相比于其他类型的视图性能也差一些。DataView 对缓冲内容没有任何预设,也不能迭代。
必须在对已有的 ArrayBuffer 读取或写入时才能创建 DataView 实例。这个实例可以使用全部或部分 ArrayBuffer,且维护着对该缓冲实例的引用,以及视图在缓冲中开始的位置。alert(secondHalfDataView.byteLength); // 81
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21const buf = new ArrayBuffer(16);
// DataView 默认使用整个 ArrayBuffer
const fullDataView = new DataView(buf);
alert(fullDataView.byteOffset); // 0
alert(fullDataView.byteLength); // 16
alert(fullDataView.buffer === buf); // true
// 构造函数接收一个可选的字节偏移量和字节长度
// byteOffset=0 表示视图从缓冲起点开始
// byteLength=8 限制视图为前 8 个字节
const firstHalfDataView = new DataView(buf, 0, 8);
alert(firstHalfDataView.byteOffset); // 0
alert(firstHalfDataView.byteLength); // 8
alert(firstHalfDataView.buffer === buf); // true
// 如果不指定,则 DataView 会使用剩余的缓冲
// byteOffset=8 表示视图从缓冲的第 9 个字节开始
// byteLength 未指定,默认为剩余缓冲
const secondHalfDataView = new DataView(buf, 8);
alert(secondHalfDataView.byteOffset); // 8
alert(secondHalfDataView.buffer === buf); // true
要通过 DataView 读取缓冲,还需要几个组件。
首先是要读或写的字节偏移量。可以看成 DataView 中的某种“地址”。
DataView 应该使用 ElementType 来实现 JavaScript 的 Number 类型到缓冲内二进制格式的转换。
最后是内存中值的字节序。默认为大端字节序。
DataView 对存储在缓冲内的数据类型没有预设。它暴露的 API 强制开发者在读、写时指定一个ElementType,然后 DataView 就会忠实地为读、写而完成相应的转换。ECMAScript 6 支持 8 种不同的 ElementType:ElementType 字节长度 描述 等价的C类型 值范围 Int8 1 8 位有符号整数 signed char -128 到 127 Uint8 1 8 位无符号整数 unsigned char 0 到 255 Int16 2 16 位有符号整数 short -32 768 到 32 767 Uint16 2 16 位无符号整数 unsigned short 0 到 65 535 Int32 4 32 位有符号整数 int -2 147 483 648 到 2 147 483 647 Uint32 4 32 位无符号整数 unsigned int 0 到 4 294 967 295 Float32 4 32 位浮点数 float -3.4e+38 到 +3.4e+38 Float64 8 64 位浮点数 double -1.7e+308 到 +1.7e+308 DataView 为上表中的每种类型都暴露了 get 和 set 方法,这些方法使用 byteOffset(字节偏移量)定位要读取或写入值的位置。类型是可以互换使用的,如下例所示: 7、字节序: 前面例子中的缓冲有意回避了字节序的问题。“字节序”指的是计算系统维护的一种字节顺序的约定。DataView 只支持两种约定:大端字节序和小端字节序。大端字节序也称为“网络字节序”,意思是最高有效位保存在第一个字节,而最低有效位保存在最后一个字节。小端字节序正好相反,即最低有效位保存在第一个字节,最高有效位保存在最后一个字节。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18// 在内存中分配两个字节并声明一个 DataView
const buf = new ArrayBuffer(2);
const view = new DataView(buf);
// 说明整个缓冲确实所有二进制位都是 0
// 检查第一个和第二个字符
alert(view.getInt8(0)); // 0
alert(view.getInt8(1)); // 0
// 检查整个缓冲
alert(view.getInt16(0)); // 0
// 将整个缓冲都设置为 1
// 255 的二进制表示是 11111111(2^8 - 1)
view.setUint8(0, 255);
// DataView 会自动将数据转换为特定的 ElementType
// 255 的十六进制表示是 0xFF
view.setUint8(1, 0xFF);
// 现在,缓冲里都是 1 了
// 如果把它当成二补数的有符号整数,则应该是-1
alert(view.getInt16(0)); // -1
JavaScript 运行时所在系统的原生字节序决定了如何读取或写入字节,但 DataView 并不遵守这个约定。对一段内存而言,DataView 是一个中立接口,它会遵循你指定的字节序。DataView 的所有 API 方法都以大端字节序作为默认值,但接收一个可选的布尔值参数,设置为 true 即可启用小端字节序。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31// 在内存中分配两个字节并声明一个 DataView
const buf = new ArrayBuffer(2);
const view = new DataView(buf);
// 填充缓冲,让第一位和最后一位都是 1
view.setUint8(0, 0x80); // 设置最左边的位等于 1
view.setUint8(1, 0x01); // 设置最右边的位等于 1
// 缓冲内容(为方便阅读,人为加了空格)
// 0x8 0x0 0x0 0x1
// 1000 0000 0000 0001
// 按大端字节序读取 Uint16
// 0x80 是高字节,0x01 是低字节
// 0x8001 = 2^15 + 2^0 = 32768 + 1 = 32769
alert(view.getUint16(0)); // 32769
// 按小端字节序读取 Uint16
// 0x01 是高字节,0x80 是低字节
// 0x0180 = 2^8 + 2^7 = 256 + 128 = 384
alert(view.getUint16(0, true)); // 384
// 按大端字节序写入 Uint16
view.setUint16(0, 0x0004);
// 缓冲内容(为方便阅读,人为加了空格)
// 0x0 0x0 0x0 0x4
// 0000 0000 0000 0100
alert(view.getUint8(0)); // 0
alert(view.getUint8(1)); // 4
// 按小端字节序写入 Uint16
view.setUint16(0, 0x0002, true);
// 缓冲内容(为方便阅读,人为加了空格)
// 0x0 0x2 0x0 0x0
// 0000 0010 0000 0000
alert(view.getUint8(0)); // 2
alert(view.getUint8(1)); // 0